<<8910111213>>
51.

If   $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, the  $\frac{d^{2}y}{dx^{2}}=$


A) $-\frac{b^{4}}{a^{2}y^{3}}$

B) $\frac{b^{2}}{a^{}y^{2}}$

C) $-\frac{b^{3}}{a^{2}y^{3}}$

D) $\frac{b^{3}}{a^{2}y^{2}}$



52.

The solution  of  $\frac{dy}{dx}=\frac{x+y}{x-y}$  is 


A) $\tan^{-1}\left(\frac{y}{x}\right)=\log\sqrt{x^{2}+y^{2}}+C$

B) $\tan^{-1}\left(\frac{y}{x}\right)=\log\sqrt{x^{2}-y^{2}}+C$

C) $\sin^{-1}\left(\frac{y}{x}\right)=\log\sqrt{x^{2}+y^{2}}+C$

D) $\cos^{-1}\left(\frac{y}{x}\right)=\log\sqrt{x^{2}-y^{2}}+C$



53.

If the  perpendicular distance  between  the point (1,1)  to the line 3x+4y+c=0 is 7, then the possible values of C are


A) -35,42

B) 35,28

C) -42,-28

D) 28,-42



54.

Let $f:(-1,1) \rightarrow IR$ be a differentiable function with f(0)=-1 and f'(0)=1 .If g(x)=(f(2f(x)+2))2 , the g'(0)=


A) 0

B) -2

C) 4

D) -4



55.

If the imaginary part of $\frac{2z+1}{iz+1}$ is -2  , then the locus of the point representing  z in the complex plane is 


A) a circle

B) a parabola

C) a straight line

D) an ellipse



<<8910111213>>